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INTRODUCTION

Verification of safety margins for high-burnup
fudl and fuels clad with new aloys

U.S. Regulatory Guide (RG) 1.157 §3.2.5.1
recognizes the effect of steam pressure for
Intermediate break LOCA

New publications after RG 1.157 was issued

Follow-up of 28" WRSM paper to calculate what
would have been the ECR criterion if the Cathcart-
Pawel correlation would have been used in 1973

Some words on the Cathcart and Pawel’ s data



INTERMEDIATE BREAK LOCAS

« USNRC LOCA PIRT, NUREG/CR-6744
(3-inches Appendix K calculation):

— Peak Clad Temperature ~1000°C

— Time above 800°C ~1000s

— Pressure ~35bars

« Some French fuel managements (delayed primary
pumpstrip):
— Time above 800°C ~300s
— Pressure above 25bars
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Figure 7,
3-INCH PRESSURIZER PRESSURE
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ZRY-4 [ HIGH PRESSURE STEAM

« Pawel et al. were alone to publish both oxide layer
growth and weight gain in open literature

»Use of Pawel’ s datato correlate weight gain
and oxide layer growth

o Park et al. didn’'t publish full tabulated datain
open literature

»Use of Park’sempirical model



correlation between weight gain
and oxide thickness (Pawel's tests)

weight gain (mg/cm2)
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Fig.6. Comparison of suggested model to the
measured data.



oxide thickness (um)

Zry - oxide thickness at 750°C as a function
of square root of time and steam pressure
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oxide thickness (um)
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Zry - oxide thickness at 850°C as a function
of square root of time and steam pressure
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OXIDE LAYER GROWTH AT 1101°C
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Fig. 4. Oxide layer growth during oxidation of Sandvik zir-
caloy<4 PWR tubing at 1101°C in steam at 3.45 MPa (500
psi), and at atmospheric pressure. Solid line represents data
for oxidation at atmospheric pressure.



ZRY-4 [ HIGH PRESSURE STEAM

» Pawel and Park associate their observations with
the tetragonal/monoclinic transition of ZrO,:

 Below ~1100°C, thetetragonal phaseisinitialy
stabilized by the coupled effects of:

— Compressive stresses at the metal/oxide
Interface (high Pilling-Bedworth ratio)

— Small crystallite size
— Substoichiometry
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ZRY-4 [ HIGH PRESSURE STEAM

« During growing, the same coupled effects induce
transformation into monoclinic phase:

— Stress relaxation
— Crystallite growth
— Evolution to stoichiometry

This transformation induces microporosities and
microcracks

Model similar to Leistikow’s « breakaway »
mode! a Py oepneric @d longer times



ZRY-4 [ HIGH PRESSURE STEAM

e According to Park’stests, accelerated oxidation
Kinetic due to steam partial pressure rather than
total pressure

o Crystallite growth kinetic increases with steam
partial pressure (Murase & Kato)

e High steam pressure accelerates the evolution to
stoichiometry

o Park observes that temperatures at which the
effect Is maximal for Zry-4 (750-800°C) coincide
with temperatures of Leistikow’sfirst
« breakaway » peak at P atrmospheric and longer times



S. Leistikow, G. Schanz / Cxidation kinetics of Zircaloy-4 fuel cladding
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ZRY-4 [ HIGH PRESSURE STEAM

Conclusion for fresh Zry-4.

 Inthe 25-50barsrange, the kinetik is
enhanced (>Baker-Just), but limited Iin
absolute value (relative maximal effect at
750-800°C)

* No actual safety problem for intermediate
break LOCA with FRESH Zry-4




weight gain (mg/cm2)

E110/Zry - weight gain at 850°C as a function

of square root of time and steam pressure
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1%Nb ALLOY S/ H. P. STEAM

At 750°C, pressure effect lower than for Zry-4

At 850°C and 40bars, strongly enhanced initia
kinetic for E-110 alloy (>17%ECR-2 sides, even
without wall thinning by ballooning) (Vrtilkova)

temperatures of « breakaway » peak at P,
and longer times (>835°C) coincide with
temperatures at which the pressure effect is
maximal for E-110

Lack of datafor new Nb-containing western
aloys, need of tests

mospheric
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H. BURNUP ZRY-4/H. P. STEAM

o Lack of datafor high burnup (hydrided)
Zry-4

* Known role of hydrogen on the tetragonal
to monoclinic transition (JAERI)

e Need of tests



H. P. STEAM / CONCLUSION(1)

* Aspost-guench ductility and long term
« breakaway » at Py osneric: BUL UNlike short
term weight gain kinetic at Py osoneric H-P-
steam oxidation behavior cannot be

extrapolated from one Zr alloy to another
one

e Fresh Zry-4:. no actual safety problem for
Intermediate break L OCA



H. P. STEAM / CONCLUSION(2)

e E-110 alloy: strongly enhanced initial
Kinetic at 850°C and 40bars

* NDb-containing western alloys and high
burnup Zry-4: lack of data, need of tests

 First tests under preparation in France (EdF-
Framatome-CEA) to start in 2003



17%ECR and Baker-Just

» First step of the criterion: Zero ductility
temperature (ZDT)<275°F (135°C)
« Second step based on Hobson's slow-ring-
compression tests: ?+/W;<0.44
— 7> combined thickness of oxide and aZr(O)
layers
— W: thickness before oxidation



Hobson's slow ring-compression tests - Specimen
ductility as a function of deformation temperature and

?-/Wo (Calculated after ORNL-4758, figure 5)
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17%ECR and Baker-Just

e Same calculational procedure asin the Hearing
Concluding Statement

* When specimens had same time at oxidation
temperature and same compression temperature,
artificial displacement by 10°F, upwards for the
(partially) ductile ones and downwardsfor the
zero ductility ones

* Very good straight limiting line crossing 275°F
at ~0.44



Hobson's slow ring-compression tests - Specimen
ductility as a function of deformation temperature and
ECR (Calculated with Baker-Just)
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17%ECR and Baker-Just

Third step based on acalculation with the
Baker-Just correlation: ECR<17%

Again, very good straight limiting line
crossing 275°F between 17 and 18%
17% choosen as rounded value at the left

Now hypothetical fourth step based on the
Cathcart-Pawel correlation




Hobson's slow ring-compression tests - Specimen
ductility as a function of deformation temperature and
ECR (Calculated with Cathcart-Pawel)
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17%ECR and Baker-Just

* Again, very good straight limiting line crossing
275°F between 14 and 15%
* 14% would have been choosen as rounded value at

the left, If the Regulatory Staff would have had
and used 1n 1973 the Cathcart-Pawel correation

e Baker-Just correation must be used for
comparison with 17%, but not necessarily for
calculation of chemica heat



CATHCART-PAWEL

Weight gain correlation used in RG 1.157 and

recommended In Research Information L etter
(RIL) 0202

Weight gain measured by the metallurgical
method (assumed stoichiometric oxide)

Surprise in appendix B of ORNL/NUREG-17:
high hydrogen uptake (up to 1096wtppm)

Explanation: steam leaks at the inner side
(oxidation nominally only at the outer side)



CATHCART-PAWEL

e Cathcart and Pawel were ignoring the
hydrogen effect on the Zr(H)-O diagram

 Now we know that H stabilizes (3/r,
Increasing the O solubility, and destabilizes
aZr(O), agreater O content being necessary
to stabilize aZr(O) in presence of H

o Confirmed by recent tests in France,
sponsored by IRSN and EdF
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CATHCART-PAWEL

One specimen H precharged
Both O charged at agiven % by 2-side
oxidation

Annealing to dissolve the oxide layers up to
the thermodynamic equilibrium

H reduces aZr(O) thickness and increases
[3Zr thickness



CATHCART-PAWEL

In the metallurgical measure of the weight

gain by Cathcart and Pawdl:

e O concentrationsin the (3Zr and aZr(O) phases are
underestimated, aZr(O) thicknessis reduced

e Thisiscompensated for by the oxide
stoichiometry assumption

e Cathcart-Pawel correlation coincides with
Kawasaki’ s one (2-side oxidation, no H uptake,
weighing)



CATHCART-PAWEL

e Cathcart-Pawel correlations cannot be used for the
calculation of ? (Hobson), relative (Scatena,
Sawatzky) or absolute (Chung & Kassner) 3
thickness

o As Cathcart-Pawel weight gain correlation
coincides with Kawasaki’ s one, it may be used for
the calculation of chemical heat, provided that the
uncertainties are taken into account (inaRG 1.157
approach, not in an Appendix K approach)



